SYSTEM RESOURCES

Commercially Available Technologies

System Resources – Commercially Available Technologies

<u>Renewable</u>	<u>Storage</u>	Firm/Dispatchable
Wind	BESS ¹	CTG ²
Solar		CC ³

- 1) Battery Energy Storage System ("BESS")
- 2) Combustion Turbine Generator ("CTG")
- 3) Combined Cycle ("CC")

Xcel Energy's Sagamore Wind Farm, NM.

Xcel Energy's Sandhill Solar Farm, CO.

Source Image: CESI

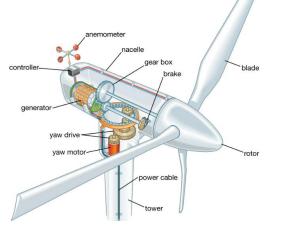
© 2023 Xcel Energy

Hobbs Generation Station, NM.

System Resources – Commercially Available Technology Modeling Benefits

- Current market established cost and production profiles
 - Actionable near-term modeling results (this decade) Predictable
 - Cost established
 - Time to market established
 - Current infrastructure certainty Reuse of existing interconnections beneficial
- Solves near term needs with today's technology
 - Leaves opportunity for "horizon" planning and integration of emerging technologies

System Resources – Commercially Available Technology Attributes


Attribute	Wind	Solar	BESS ³	Long Duration BESS ⁴
Firm and Dispatchable	No	<mark>N0</mark>	Yes	Yes
Limited Duration	N/A	N/A	Yes	Multi-day
Proposed Accreditation Method	ELCC ²	ELCC ²	ELCC ²	TBD
Summer Capacity Accreditation	<mark>~20%</mark>	<mark>~75%</mark>	<mark>>95%</mark>	TBD
Winter Capacity Accreditation	<mark>~20%</mark>	<mark><5%</mark>	<mark>~80%</mark>	TBD
Construction Cost (\$/kW)	1,200-2,400	1,200-2,400	1,500-2,100	TBD
Heat Rate (MMBtu/kWh)	N/A	N/A	N/A	N/A
Expected Capacity Factor (%)	45-55	28-35	N/A	N/A
CO ₂ Free	Yes	<mark>Yes</mark>	<mark>N/A</mark>	N/A

1) PBA – Performance Based Accreditation

- 2) ELCC Effective Load Carrying Capability
- 3) BESS Battery Energy Storage System Round Trip Efficiencies: ~ 80% 85%
- 4) BESS Longer Term Durations Round Trip Efficiencies: ~ 40% 50%

System Resources – Renewable – Wind

- Convert's the wind energy into electricity
- Large, three-bladed Wind Turbine Generators ("WTGs") aggregated to produce hundreds of MWs
- Intermittent resource
- Capacity factors range from 45%-55% in eastern New Mexico.
- Moderate capacity accreditation due to noncoincidental peak generation profiles.
- Land use:125 acre/MW
 Wind turbine
- PTC/ITC Eligible

Source Image: Encyclopedia Britannica, Inc.

Xcel Energy's Sagamore Wind Farm, NM.

System Resources – Renewable – Solar (PV)

- Convert's the sun's energy (photons of light) into electricity
- Several forms: Photovoltaic ("PV"), concentrating PV, or concentrating solar power
- Intermittent resource
- Capacity factors range from 30%-35% in eastern New Mexico
- Max output occurs prior to load peak, therefore, less capacity accreditation than nameplate
- Available during the daytime. Generation rises and falls with the sun barring any sky cover such as clouds or fog
- Land use: 8 acre/MW
- PTC/ITC Eligible

Xcel Energy's Sandhill Solar Farm, CO.

System Resources – Storage – BESS

- Power from Electrochemical Process, or other Potential Energy Sources (springs, gravity, etc.)
- Various battery chemistries available, Lithium-ion most currently most prevalent
- Storage typically ranges in size from 10 MW to over 250 MW for durations from 2 to 8 hours
- Balances the intermittent nature of wind and solar
- Dispatchable
- Longer term storage durations in development

Source Image: CESI

System Resources – Storage – Long Duration BESS

- Battery Energy Storage ("BESS") Long Duration:
- Long duration, multi-day
 - Form Energy's Iron-air BESS 10MW/100-hour storage duration
 - Xcel Energy has two pilot projects underway planned for our Northern and Colorado sister utilities
 - Uses electricity to form elemental iron; when the iron rusts again, it releases energy in the form of electricity that can be put back on the grid

System Resources – Commercially Available Technology Attributes


Attribute	CTG	CC	Future CTG ^{2,3}	Future CC ^{2,3}
Firm and Dispatchable	Yes	Yes	Yes	Yes
Limited Duration	No	No	No	No
Proposed Accreditation Method	PBA ¹	PBA ¹	PBA ¹	PBA ¹
Summer Capacity Accreditation	<mark>>95%</mark>	<mark>>95%</mark>	>95%	>95%
Winter Capacity Accreditation	<mark>>95%</mark>	<mark>>95%</mark>	>95%	>95%
Construction Cost (\$/kW)	500-750	~1000	TBD	TBD
Heat Rate (MMBtu/kWh)	10	6	TBD	TBD
Expected Capacity Factor (%)	0-25	25-80	0-25	25-80
CO ₂ Free	No	No	TBD	TBD

1) PBA – Performance Based Accreditation

- 2) Hydrogen Capable
- 3) Carbon Capture and Storage

System Resources – Thermal – CTG

- Typically referred to a simple-cycles because they operate on a single thermal cycle known as the Brayton Cycle
- Operate utilizing several established fuel sources but are traditionally fired with natural gas with a backup fuel such as fuel oil
- Available in a wide capacity range from 4 MW to over 400 MW
- Provide extremely fast start capabilities and ramp rates, excellent load following
- Firm and dispatchable
- Technological advancements have allowed utilization of carbon-free H2, currently blended (38% blend achieved currently)
- Carbon capture an option in the future

Xcel Energy's Jones Station, TX.

System Resources – Thermal – CC

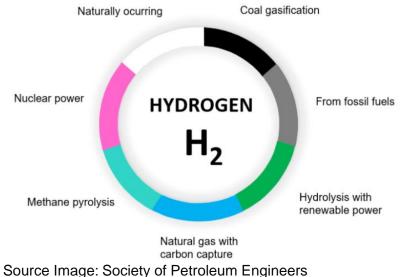
- Utilize CTGs in conjunction with Heat Recovery Steam Generators ("HRSGs") and a Steam Turbine Generator ("STG")
- Referred to as CCs because they combine the thermodynamic Brayton and Rankine Cycles
- Exhaust heat from the CTG(s) are ducted through the HRSG(s) to generator steam used by the STG
- Operate in multiple configurations, i.e., 1-on-1, 2-on-1, 3-on-1, etc.
- Operate on various established fuel sources
- Come in a variety of sizes that can range from 100 MW to 1,600 MW
- Efficient due to the "waste" heat is used to generate electricity
- Excellent at load following, Firm and dispatchable
- Hydrogen capable
- Carbon capture an option in the future

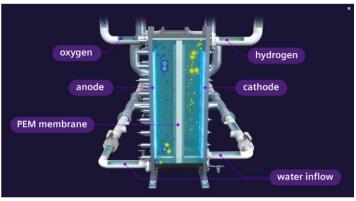
Hobbs Generation Station, NM.

Hydrogen (H2):

Green

Hydrogen produced using surplus renewable energy resources, such as solar or wind power, to power an electrolyzer which splits water into hydrogen and oxygen (process known as electrolysis)


• Blue


Hydrogen produced from natural gas and supported by carbon capture and storage. The CO2 generated during the manufacturing process is captured and stored

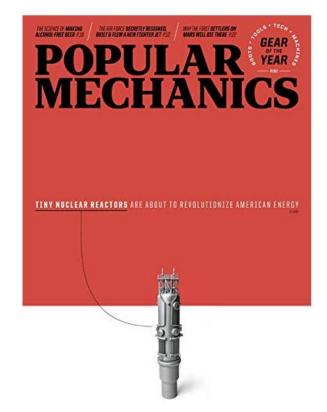
• Pink

© 2023 Xcel Energy

> Hydrogen produced using surplus nuclear energy to power an electrolyzer.

Source Image: Siemens Energy

Carbon Capture and Storage/Sequestration ("CCS"):


- Carbon Dioxide (CO2) chemically separated from combustion exhaust
- Capable of exceed 95% efficiency
- Often stored in geological formations or other forms for reuse in other processes

Emerging Technologies:

- The following discussion is not an exhaustive list nor are major technical details discussed
- Material is meant to inform at a high level of some of the emerging technologies that might be of interest to stakeholders.
- If more information is required, Xcel Energy would be happy to provide

Nuclear – Small Modular Reactors (SMRs):

- As the name implies, modular scale of proven nuclear reactor designs
- Fully factory fabricated power modules (~77 MW)
 - E.g. NuScale plants from ~ 230 MW 900 MW
 - Reduces the financial risks associated w/ conventional builds
- Carbon free energy production

Source Image: Popular Mechanics Jan/Feb 2021

Linear Generators

- Reaction vs combustion
- Modular
 - ~1.5MW/module
- Natural gas or biogas fuels
- 100% H2 Capable

Source Image: Mainspring Energy

System Resources – Modeling Emerging Technology

- "Place holders" representative of technology types available for the model to select
- What would stakeholders prefer to model, need suggestions by July 6 preferably

QUESTIONS?

© 2023 Xcel Energy